Capas I y II Modelo OSI y TCP/IP
Trabajo Práctico N° 1
Indice
Introducción
Modelo OSI Introducción
Las siglas O.S.I. cuyo significado es Open System Interconnection o, en castellano, Interconexión de Sistemas Abiertos, se formó en el año 1983 y es el resultado del trabajo de la ISO (International Standard Organization) para la estandarización internacional de los protocolos de comunicación como necesidad de intercambiar información entre sistemas heterogéneos, entre sistemas cuyas tecnologías son muy diferentes entre sí , llevó a la ISO a buscar la manera de regular dicho intercambio de información.
Se consideró que los protocolos y modelos de la OSI llegarían a dominar las comunicaciones entre computadores, reemplazando eventualmente las
implementaciones particulares de protocolos así como a modelos rivales tales como TCP/IP o el Protocolo de Control de Transmisión y Protocolo Internet.
Pero esto no ha sucedido así, aunque se han desarrollado muchos protocolos de utilidad dentro del contexto de OSI, el modelo de las siete capas en su conjunto no ha prosperado. Por el contrario, la arquitectura TCP/IP se ha convertido en la dominante.
No tenemos que descartar que la agencia que se encargó de esta tarea, la ISO consiguió obtener grandes avances en lo dedicado a la comunicación entre los computadores aunque su trabajo se extiende desde 1946 hasta hoy día con el objetivo de promociar el desarrollo de normalizaciones que abarcan un gran abanico de materias siguiendo a su vez unas determinadas normas para la creación de un estándar ISO.
Capas del Modelo OSI
El comité de la ISO definió una serie de capas y servicios realizados por cada una de esas capas que podemos ver a continuación de forma esquemática :
- NIVEL 7: APLICACIÓN : Provee servicios generales relacionados con aplicaciones (p.ej.: transmisión de ficheros)
- NIVEL 6: PRESENTACIÓN : formato de datos (p.ej : ASCII)
- NIVEL 5: SESIÓN : Coordina la interacción en la sesión (diálogo) de los usuarios
- NIVEL 4: TRANSPORTE : Provee la transmisión de datos confiable de punto a punto
- NIVEL 3: RED : Enruta unidades de información
- NIVEL 2: ENLACE DE DATOS : Provee intercambio de datos entre los dispositivos del mismo medio
- NIVEL 1: FÍSICO : Transmite un flujo de bits a través del medio físico
Modelo OSI
Detalle técnico de las capas del modelo OSI.
CAPA FÍSICA
La capa física abarca el conjunto físico propiamente dicho del que consta toda comunicación y también abarca las reglas por las cuales pasan los bits de uno a otro. Sus principales características son las siguientes :
Mecánicas: relaciona las propiedades físicas del interfaz con el medio de transmisión. A veces, incluye la especiflcación de un conector que une una o más señales del conductor, llamadas circuitos.
Eléctricas: relaciona Ia representación de los bits (por ejemplo, en términos de niveles de tensión) y Ia tasa de transmisi6n de datos. Maneja voltajes y pulsos eléctricos.
Funcional: especifica las funciones realizadas por los circuitos individuales del interfaz físico entre un sistema y el medio de transmisión.
De procedimiento: especifica Ia secuencia de eventos por los que se intercambia un flujo de bits a través del medio físico.
CAPA DE ENLACE DE DATOS
Mientras Ia capa física proporciona solamente un servicio bruto de flujo de datos, Ia de enlace de datos intenta hacer el enlace físico seguro y proporciona medios para activar, tener y desactivar el enlace. El principal servicio proporcionado por Ia capa de enlace de datos a las superiores es el de detección de errores y control. Así con un protocolo de Ia capa de enlace de datos completamente operacional, Ia capa adyacente superior puede suponer
transmisión libre de errores en el enlace. Sin embargo, si Ia comunicación es entre dos sistemas que no están directamente conectados, Ia conexión constará de varios enlaces de datos unidos, cada uno operando independientemente. De este modo no se libera a la capa superior de la responsabilidad del control de errores.
CAPA DE RED
La capa de red proporciona los medios para la transferencia de información entre los sistemas finales a través de algún tipo de red de comunicación. Libera a las capas superiores de la necesidad de tener conocimiento sobre la transmisión de datos subyacente y las tecnologías de conmutación utilizadas para conectar los sistemas. En esta capa, el sistema computador está envuelto en un diálogo con la red para especificar la dirección de destino y solicitar ciertas facilidades de la red, como prioridad.
Existe un espectro de posibilidades para que las facilidades de comunicación intermedias sean gestionadas por la capa de red. En un extremo, existe en enlace punto a punto (from point to point) directo entre las estaciones. En este caso, no existe Ia necesidad de una capa de red ya que Ia capa de enlace de datos puede proporcionar las funciones necesarias de gestión del enlace. Lo siguiente puede ser un sistema conectado a través de una única red, coma una red de conmutación de circuitos a de conmutación de paquetes.
En el otro extremo, dos sistemas finales podrían desear comunicarse, pero sin estar conectados ni siquiera a la misma red. Pero están conectados a redes que, que directa o indirectamente, están conectadas unas a otras. Este caso requiere el uso de alguna técnica de interconexión entre redes.
CAPA DE TRANSPORTE
La capa de transporte proporciona un mecanismo para intercambiar datos entre sistemas finales. El servicio de transporte orientado a conexión asegura que los datos se entregan libres de errores, en secuencia y sin pérdidas o duplicados. La capa de transporte puede estar relacionada con Ia optimización del uso de los servicios de red y proporcionar una calidad del servido solicitada. Por ejemplo, Ia entidad de sesión puede especificar tasas de error aceptables, retardo máximo, prioridad y seguridad.
El tamaño y Ia complejidad del protocolo de transporte dependen de cómo seguras o inseguras sean las redes y sus servicios. De acuerdo a esto, ISO ha
creado una familia de 5 estándares de protocolos de transporte, cada uno orientado a los diferentes servicios subyacentes. En Ia arquitectura de protocolos TCP/IP, existen dos protocolos comunes de Ia capa de transporte: el orientado a conexión TCP y el no orientado a conexión UDP (User Datagram Protocol).
CAPA DE RED
La capa de red proporciona los medios para la transferencia de información entre los sistemas finales a través de algún tipo de red de comunicación. Libera a las capas superiores de la necesidad de tener conocimiento sobre la transmisión de datos subyacente y las tecnologías de conmutación utilizadas para conectar los sistemas. En esta capa, el sistema computador está envuelto en un diálogo con la red para especificar la dirección de destino y solicitar ciertas facilidades de la red, como prioridad.
Existe un espectro de posibilidades para que las facilidades de comunicación intermedias sean gestionadas por la capa de red. En un extremo, existe en enlace punto a punto (from point to point) directo entre las estaciones. En este caso, no existe Ia necesidad de una capa de red ya que Ia capa de enlace de datos puede proporcionar las funciones necesarias de gestión del
enlace. Lo siguiente puede ser un sistema conectado a través de una única red, coma una red de conmutación de circuitos a de conmutación de paquetes.
En el otro extremo, dos sistemas finales prodrían desear comunicarse, pero sin estar conectados ni siquiera a la misma red. Pero están conectados a redes que, que directa o indirectamente, están conectadas unas a otras. Este caso requiere el uso de alguna técnica de interconexión entre redes.
CAPA DE TRANSPORTE
La capa de transporte proporciona un mecanismo para intercambiar datos entre sistemas finales. El servicio de transporte orientado a conexión asegura que los datos se entregan libres de errores, en secuencia y sin pérdidas o duplicados. La capa de transporte puede estar relacionada con Ia optimización del uso de los servicios de red y proporcionar una calidad del servido solicitada. Por ejemplo, Ia entidad de sesión puede especificar tasas de error aceptables, retardo máximo, prioridad y seguridad.
El tamaño y Ia complejidad del protocolo de transporte dependen de cómo seguras o inseguras sean las redes y sus servicios. De acuerdo a esto, ISO ha creado una familia de 5 estándares de protocolos de transporte, cada uno orientado a los diferentes servicios subyacentes. En Ia arquitectura de protocolos TCP/IP, existen dos protocolos comunes de Ia capa de transporte: el orientado a conexión TCP y el no orientado a conexión UDP (User Datagram Protocol).
CAPA DE SESIÓN
Las cuatro capas más bajas del modelo OSI proporcionan un medio para el intercambio rápido y seguro de datos. Aunque para muchas aplicaciones este servicio básico es insuficiente. Por lo tanto , se tuvo que mejorar algunos aspectos proporcionando unos mecanismos para controlar el diálogo entre aplicaciones en sistemas finales. En muchos casos, habrá poca o ninguna necesidad de la capa de sesión, pero para algunas aplicaciones, estos servicios se utilizan.
Los servicios clave proporcionados por la capa de sesión incluyen los siguientes puntos :
Disciplina de Diálogo : esta puede ser simultánea en dos sentidos o fullduplex o alternada en los dos sentidos o semi-duplex.
Agrupamiento: El flujo de datos se puede marcar para definir grupos de datos. Por ejemplo, una tienda de venta al por menor esta transmitiendo datos de ventas a una oficina regional, estos se pueden marcar para indicar el final de los datos de ventas de cada departamento. Esto indicaría al computador que finalice Ia cuenta de totales para ese departamento y comience una nueva cuenta para el departamento siguiente.
Recuperación : Ia capa de sesión puede proporcionar un mecanismo de puntos de comprobación, de forma que si ocurre algún tipo de fallo entre puntos de comprobación, Ia entidad de sesión puede retransmitir todos los datos desde el último punto de comprobación.
CAPA DE PRESENTACIÓN
La capa de presentación define el formato de los datos que se van a intercambiar entre las aplicaciones y ofrece a los programas de aplicación un conjunto de servicios de transformación de datos. La capa de presentación define Ia sintaxis utilizada entre entidades de aplicación y proporciona los medios para Ia selección y las subsecuentes modificaciones de Ia representación utilizada. Algunos ejemplos de los servicios específicos que se podrían realizar en esa capa son los de compresión y encriptado de datos.
CAPA DE APLICACIÓN
La capa de aplicación proporciona un medio a los programas de aplicación para que accedan al entorno OSI. Esta capa contiene funciones de administración y generalmente mecanismos útiles para admitir aplicaciones distribuidas. Además, se considera que residen en esta capa las aplicaciones de uso general como transferencia de ficheros correo electrónico y acceso terminal a computadores remotos.
Capa I “Física”
Medio Físico
En el clima actual de los negocios, el tener un sistema confiable de cableado para comunicaciones es tan importante como tener un suministro de energía eléctrica en el que se pueda confiar, por lo tanto es el fundamento de cualquier sistema de información. Diez años atrás, el único cable utilizado en las "redes" de cableado de edificios, era el cable tipo POTS, o cable regular para teléfono, instalado por la compañía de teléfonos local. El conjunto de cables POTS era capaz de manejar comunicaciones de voz, pero para poder apoyar las comunicaciones de datos, se tenía que instalar un segundo sistema privado de cables. Hasta no hace mucho, los sistemas privados independientes eran aceptables. Pero, en el mercado actual ávido de información, el poder proveer de comunicaciones de voz y de datos por intermedio de un sistema de cableado estructurado universal es un requisito básico de los negocios. Además, ya que la comunicación en redes se hace más compleja, - más usuarios comparten dispositivos periféricos, se efectúan más tareas de misión crítica sobre las redes, y crece la necesidad de acceso más rápido a la información -, más importante se vuelve entonces una buena infraestructura para esas redes. El primer paso necesario hacia la adaptabilidad, flexibilidad, y longevidad de las redes actuales, comienza con el cableado estructurado.
Es vital que el cableado de comunicaciones sea capaz de soportar una variedad de aplicaciones, y dure lo que dura la vida de una red. Si ese cableado es parte de un sistema bien diseñado de cableado estructurado, esto permite la fácil administración de traslados, adiciones, y cambios, así como una migración transparente a nuevas topologías de red. Por otra parte, los sistemas de "preocúpese hasta que lo necesite", hacen un problema de los traslados, cambios, y adiciones, y hacen difícil la implantación de nuevas topologías de red. Los problemas con la red ocurren más frecuentemente, son más difíciles de localizar, y tardan más en resolverse. Cuando las comunicaciones de los sistemas fallan, los empleados y los activos de las empresas se paralizan, causando pérdida de ingresos y ganancias. Aún peor, la imagen ante clientes y proveedores puede afectarse adversamente.
En éste trabajo de investigación se presentan las ventajas de utilizar normas basadas en el sistema de cableado estructurado. También, se cubrirá una breve perspectiva histórica del cableado estructurado, una revisión de las normas actuales, tipos de medio y criterios de rendimiento, diseño del sistema y recomendaciones de instalación.
¿Qué es un sistema de cableado?
Un sistema de cableado da soporte físico para la transmisión de las señales asociadas a los sistemas de voz, telemáticos y de control existentes en un edificio o conjunto de edificios (campus). Para realizar esta función un sistema de cableado incluye todos los cables, conectores, repartidores, módulos, etc. necesarios.
Un sistema de cableado puede soportar de manera integrada o individual los siguientes sistemas:
- Sistemas de voz
- Centralitas (PABX), distribuidores de llamadas (ACD)
- Teléfonos analógicos y digitales, etc.
- Sistemas telemáticos
- Redes locales
- Conmutadores de datos
- Controladores de terminales
- Líneas de comunicación con el exterior, etc.
- Sistemas de Control
- Alimentación remota de terminales
- Calefacción, ventilación, aire acondicionado, alumbrado, etc.
- Protección de incendios e inundaciones, sistema eléctrico, ascensores
- Alarmas de intrusión, control de acceso, vigilancia, etc.
En caso de necesitarse un sistema de cableado para cada uno de los servicios, al sistema de cableado se le denomina específico; si por el contrario, un mismo sistema soporta dos o más servicios, entonces se habla de cableado genérico.
El resto de esta guía se limita a los Sistemas de Cableado genéricos debido a la mayor flexibilidad que ofrecen respecto a soluciones específicas. Esta guía tampoco incluye comunicaciones inalámbricas por no utilizar un soporte físico (cobre, fibra óptica) para la transmisión.
Tipos de cables
El funcionamiento del sistema cableado deberá ser considerado no sólo cuando se están apoyando necesidades actuales sino también cuando se anticipan necesidades futuras. Hacer esto permitirá la migración a aplicaciones de redes más rápidas sin necesidad de incurrir en costosas actualizaciones de sistema de cableado. Los cables son el componente básico de todo sistema de cableado existen diferentes tipos de cables. La elección de uno respecto a otro depende del ancho de banda necesario, las distancias existentes y el coste del medio.
Cada tipo de cable tiene sus ventajas e inconvenientes; no existe un tipo ideal. Las principales diferencias entre los distintos tipos de cables radican en la anchura de banda permitida (y consecuentemente en el rendimiento máximo de transmisión), su grado de inmunidad frente a interferencias electromagnéticas y la relación entre la amortiguación de la señal y la distancia recorrida.
En la actualidad existen básicamente tres tipos de cables factibles de ser utilizados para el cableado en el interior de edificios o entre edificios:
- Coaxial
- Par Trenzado (2 pares)
- Par Trenzado (4 pares)
- Fibra Óptica
(De los cuales el cable Par Trenzado(2 y 4 pares) y la Fibra Óptica son reconocidos por la norma ANSI/TIA/EIA-568-A y el Coaxial se acepta pero no se recomienda en instalaciones nuevas)
A continuación se describen las principales características de cada tipo de cable, con especial atención al par trenzado y a la fibra óptica por la importancia que tienen en las instalaciones actuales, así como su implícita recomendación por los distintos estándares asociados a los sistemas de cableado.
Cable Coaxial
Este tipo de cable esta compuesto de un hilo conductor central de cobre rodeado por una malla de hilos de cobre. El espacio entre el hilo y la malla lo ocupa un conducto de plástico que separa los dos conductores y mantiene las propiedades eléctricas. Todo el cable está cubierto por un aislamiento de protección para reducir las emisiones eléctricas. El ejemplo más común de este tipo de cables es el coaxial de televisión.
Originalmente fue el cable más utilizado en las redes locales debido a su alta capacidad y resistencia a las interferencias, pero en la actualidad su uso está en declive.
Su mayor defecto es su grosor, el cual limita su utilización en pequeños conductos eléctricos y en ángulos muy agudos.
Existen dos tipos de cable coaxial:
- Thick (grueso). Este cable se conoce normalmente como "cable amarillo", fue el cable coaxial utilizado en la mayoría de las redes. Su capacidad en términos de velocidad y distancia es grande, pero el coste del cableado es alto y su grosor no permite su utilización en canalizaciones con demasiados cables. Este cable es empleado en las redes de área local conformando con la norma 10 Base 2.
- Thin (fino). Este cable se empezó a utilizar para reducir el coste de cableado de la redes. Su limitación está en la distancia máxima que puede alcanzar un tramo de red sin regeneración de la señal. Sin embargo el cable es mucho más barato y fino que el thick y, por lo tanto, solventa algunas de las desventajas del cable grueso. Este cable es empleado en las redes de área local conformando con la norma 10 Base 5
Par Trenzado
Es el tipo de cable más común y se originó como solución para conectar teléfonos, terminales y ordenadores sobre el mismo cableado, ya que está habilitado para comunicación de datos permitiendo frecuencias más altas transmisión. Con anterioridad, en Europa, los sistemas de telefonía empleaban cables de pares no trenzados.
Cada cable de este tipo está compuesto por una serie de pares de cables trenzados. Los pares se trenzan para reducir la interferencia entre pares adyacentes. Normalmente una serie de pares se agrupan en una única funda de color codificado para reducir el número de cables físicos que se introducen en un conducto. El número de pares por cable son 4, 25, 50, 100, 200 y 300. Cuando el número de pares es superior a 4 se habla de cables multipar.
Tipos de cables de par trenzado:
- No blindado. Es el cable de par trenzado normal y se le referencia por sus siglas en inglés UTP (Unshield Twiested Pair; Par Trenzado no Blindado). Las mayores ventajas de este tipo de cable son su bajo costo y su facilidad de manejo. Sus mayores desventajas son su mayor tasa de error respecto a otros tipos de cable, así como sus limitaciones para trabajar a distancias elevadas sin regeneración.
Para las distintas tecnologías de red local, el cable de pares de cobre no blindado se ha convertido en el sistema de cableado más ampliamente utilizado.
El estándar EIA-568 en el adendum TSB-36 diferencia tres categorías distintas para este tipo de cables.
- Categoría 3: Admiten frecuencias de hasta 16 Mhz
- Categoría 4: Admiten frecuencias de hasta 20 Mhz
- Categoría 5: Admiten frecuencias de hasta 100 Mhz
Las características generales del cable no blindado son:
- Tamaño: El menor diámetro de los cables de par trenzado no blindado permite aprovechar más eficientemente las canalizaciones y los armarios de distribución. El diámetro típico de estos cables es de 0'52 m
- Peso: El poco peso de este tipo de cable con respecto a los otros tipos de cable facilita el tendido.
- Flexibilidad: La facilidad para curvar y doblar este tipo de cables permite un tendido más rápido así como el conexionado de las rosetas y las regletas.
- Instalación: Debido a la amplia difusión de este tipo de cables, existen una gran variedad de suministradores, instaladores y herramientas que abaratan la instalación y puesta en marcha.
- Integración: Los servicios soportados por este tipo de cable incluyen:
- Red de Area Local ISO 8802.3 (Ethernet) y ISO 8802.5 (Token Ring)
- Telefonía analógica
- Telefonía digital
- Terminales síncronos
- Terminales asíncronos
- Líneas de control y alarmas
- Blindado. Cada par se cubre con una malla metálica, de la misma forma que los cables coaxiales, y el conjunto de pares se recubre con una lámina blindada. Se referencia frecuentemente con sus siglas en inglés STP (Shield Twiested Pair, Par Trenzado blindado).
El empleo de una malla blindada reduce la tasa de error, pero incrementa el coste al requerirse un proceso de fabricación más costoso.