miércoles, 17 de agosto de 2011

ventajas


Las más importantes aplicaciones son:
• Distribución de televisión
• Telefonía a larga distancia
• Conexión con periféricos a corta distancia
• Redes de área local
El cable coaxial se esta utilizando para la si distribución de la TV por cable hasta los hogares de los usuarios.Diseñado inicialmente para proporcionar servicio de acceso a áreas remotas (CATV, “Community Antena Televisión”), la TV por cable en un futuro muy cercano llegará a casi tantos hogares y oficinas como el actual sistema telefónico. El sistema de TV por cable puede transportar docenas e incluso cientos de canales a decenas de kilómetros. Tradicionalmente, el coaxial ha sido fundamental en la red de telefonía a larga distancia, aunque en la actualidad tiene una fuerte competencia en la fibra óptica, las microondas terrestres y las comunicaciones vía satélite. Cuando se usa multiplexación con división en frecuencia (FDM, “Frequency División Multiplexing”), el cable coaxial puede transportar más de 10.000 canales de voz simultáneamente.
El cable coaxial también se usa con frecuencia para conexiones entre periféricos a corta distancia. Con señalización digital, el coaxial se puede usar como medio de transmisión en canales de entrada/salida (E/S) en computadores. El cable coaxial admite un gran número de dispositivos con una gran diversidad de tipos de datos y tráfico, con coberturas que van desde un solo edificio a varios, siempre próximos entre ellos. Este cable, aunque es más caro que el par trenzado, se puede utilizar a más larga distancia, con velocidades de transmisión superiores, menos interferencias y permite conectar más estaciones. Se suele utilizar para televisión, telefonía a larga distancia, redes de área local, conexión de periféricos a corta distancia, etc. Se utiliza para transmitir señales analógicas o digitales .
Sus inconvenientes principales son:
Atenuación, ruido térmico, ruido de intermodulación. Específicamente para las LAN, el cable coaxial ofrece varias ventajas. Se pueden realizar tendidos entre nodos de red a mayores distancias que con el cable STP o UTP (unos 500 metros), sin que sea necesario utilizar tantos repetidores.
El cable coaxial es más económico que el cable de fibra óptica y la tecnología es sumamente conocida. Se ha usado durante muchos años para todo tipo de comunicaciones de datos. Para señales analógicas, se necesita un amplificador cada pocos kilómetros y para señales digitales un repetidor cada kilómetro.
El cable coaxial viene en distintos tamaños. El cable de mayor diámetro se especificó para su uso como cable de backbone de Ethernet porque históricamente siempre poseyó mejores características de longitud de transmisión y limitación del ruido. Este tipo de cable coaxial frecuentemente se denomina thicknet o red gruesa. Como su apodo lo indica, debido a su diámetro este tipo de cable puede ser demasiado rígido como para poder instalarse con facilidad en algunas situaciones.
La regla práctica es: cuanto más difícil es instalar los medios de red, más cara resulta la instalación. El cable coaxial resulta más costoso de instalar que el cable de par trenzado. Hoy en día el cable thicknet no se usa casi nunca, salvo en instalaciones especiales.
En el pasado, el cable coaxial con un diámetro externo de solamente 0,35 cm (denominado thinnet o red fina) se usaba para las redes Ethernet. Era particularmente útil para instalaciones de cable en las que era necesario que el cableado tuviera que hacer muchas vueltas. Como la instalación era más sencilla, también resultaba más económica. Por este motivo algunas personas lo llamaban cheapernet o red barata. Sin embargo, como el cobre exterior o trenzado metálico del cable coaxial comprende la mitad del circuito eléctrico, se debe tener especial cuidado para garantizar su correcta conexión a tierra. Esto se hace asegurándose de que haya una sólida conexión eléctrica en ambos extremos del cable. Sin embargo, a menudo, los instaladores omiten hacer esto. Como resultado, la mala conexión del blindaje resulta ser una de las fuentes principales de problemas de conexión en la instalación del cable coaxial. Estos problemas producen ruido eléctrico que interfiere con la transmisión de la señal a través de los medios de la red de datos. Es por este motivo que, a pesar de su diámetro pequeño, thinnet ya no se utiliza con tanta frecuencia en las redes Ethernet.
Para conectar cables coaxiales se utilizan los conectores BNC (Bayone-Neill-Concelman), simples y en T, y al final del cable principal de red hay que situar unas resistencias especiales, conocidas como resistores, para evitar la reflexión de las ondas de señal.
'Medios de Transmisión'
Cable coaxial De alto rendimiento.


'Medios de Transmisión'
Los cables coaxiales a medida para soluciones de cableados en automatización industrial, inspección visual o electromedicina son finos y de alta velocidad, y sin embargo muy resistentes. En estos campos, las aplicaciones más exigentes requieren nitidez en las imágenes de vídeo o una adquisición de datos de alta velocidad sin interferencias ni errores de bit. Los cables de Leoni presentan una considerable reducción de peso, y una alta velocidad de transmisión de señal, que
puede alcanzar hasta el 85% de la velocidad de la luz.

Los cables de tipo híbrido, que abarcan todas las necesidades de transporte de energía y señal, se han hecho acreedores del reconocimiento general en la solución de problemas en estas situaciones. Los cables híbridos tienen que ser finos, especialmente si se utilizan en canalizaciones estrechas o en espacios reducidos en
la robótica.

En los cables coaxiales, el conductor exterior concéntrico (apantallado) protege al conductor interior de interferencias con campos electromagnéticos externos en un amplio espectro de frecuencias. Los cables coaxiales a medida se pueden utilizar hasta en frecuencias de la gama de los gigahercios. Como sucede con las comunicaciones digitales, los cables de banda ancha producen unas tasas de errores de bit muy bajas, incluso en entornos contaminados por interferencias
electromagnéticas (EMI). 

Los conductores interiores son habitualmente de cobre libre de oxígeno OFHC o de acero con revestimiento de cobre. Las aleaciones de cobre u otros conductores metálicos se utilizan para satisfacer necesidades particulares. El diseño del conductor exterior también incluye consideraciones de la radiofrecuencia (RF), eléctricas y mecánicas. Los conductores exteriores trenzados son los más comunes. En casos de exigencias de apantallamiento muy altas, se trabaja con conductores exteriores de varias capas. Las señales de ruido inducidas por movimientos del cable se suprimen en gran medida añadiendo capas semiconductoras entre los conductores y el material dieléctrico.
par trenzado
Es el medio confinado más barato y más usado. Consiste en un par de cables, embutidos para su aislamiento, para cada enlace de comunicación. Debido a que puede haber acoples entre pares, estos se trenza con pasos diferentes. La utilización del trenzado tiende a disminuir la interferencia electromagnética (diafonía) entre los pares adyacentes dentro de una misma envoltura. También, el apantallamiento del cable con una malla metálica reduce las interferencias externas. Cada par de cables constituye sólo un enlace de comunicación. Típicamente, se utilizan haces en los que se encapsulan varios pares mediante una envoltura protectora. En aplicaciones de larga distancia, la envoltura puede contener cientos de pares.
'Medios de Transmisión'
Este tipo de medio es el más utilizado debido a su bajo coste (se utiliza mucho en telefonía) pero su inconveniente principal es su poca velocidad de transmisión y su corta distancia de alcance. Con estos cables, se pueden transmitir señales analógicas o digitales.
Es un medio muy susceptible a ruido y a interferencias. Para evitar estos problemas se suele trenzar el cable con distintos pasos de torsión y se suele recubrir con una malla externa para evitar las interferencias externas.Típicamente, para enlaces de larga distancia, la longitud del trenzado varía entre 5 y 15 cm. Los conductores que forman el par tienen un grosor que varia típicamente entre 0,04 y 0,09 pulgadas.
En aplicaciones digitales, típicamente, los pares trenzados se utilizan para las conexiones al conmutador digitales o a la PBX digital, con velocidades de hasta 64 Kbps. El par trenzado se utiliza también en redes de área local dentro de edificios para la conexión de computadores personales. La velocidad típica en esta configuración está en torno a los 10Mbps. No obstante, recientemente se han desarrollado redes de área local con velocidad de 100 Mbps mediante pares trenzados, aunque estas configuraciones están bastante limitadas por el número de posibles dispositivos conectados y extensión geográfica de la red. Para aplicaciones de larga distancia, el par trenzado se puede utilizar a velocidades de 4 Mbps o incluso mayores. Para señales digitales, se requieren repetidores cada 2 o
3 km.
El cable par trenzado está disponible sin y con blindaje (apantallamiento), sin blindaje se utiliza el cable de 100 ohms UTP (Unshielded Twisted Pair) y con blindaje está el cable de 150 ohms STP (Shielded Twisted Pair). El blindaje consiste en una malla metálica que cubre cada par de hilos, este blindaje no hace parte del circuito de transmisión y debe estar debidamente conectado a tierra.
Hay varias organizaciones encargadas de la estandarización del cableado en los sistemas de comunicaciones, entre ellas están la Telecommunications Industry Association (TIA), la Electronic Industries Association (EIA) y International Organization for Standardization (ISO). A continuación se da un vistazo de algunas de las normas vigentes que son utilizadas en el diseño e implementación de redes.
En Julio de 1991 un grupo de trabajo de la EIA/TIA publicó la norma ANSI/EIA/TIA-568, “Commercial Building Telecommunications Wiring Standard”, que define los requerimientos eléctricos y mecánicos en el empleo de cables y accesorios. Este estándar incluye especificaciones para 100 ohm UTP, 150 ohm STP, 50 ohm coaxial y 62.5/125 fibra óptica. Luego en 1991 se publica un boletín donde se definen categorías para el cable UTP, se definen las categorías desde la 1 hasta la 5. En octubre de 1995 se incorporan todos los boletines en el ANSI/EIA/TIA-568 [3].
Categorías UTP
Tipo Uso
Categoría1 Voz (Cable de teléfono)
Categoría 2 Datos a 4 Mbps (LocalTalk)
Categoría 3 Datos a 10 Mbps (Ethernet)
Categoría 4 Datos a 20 Mbps/16 Mbps Token Ring
Categoría 5 Datos a 100 Mbps (Fast Ethernet)
Hay ciertos parámetros de desempeño que deben cumplir los cables para pertenecer a cierta categoría. Algunos de estos parámetros son: atenuación, NEXT (Near End Crosstalk), ACR (Attenuation-to-crosstalk ratio), pérdidas por retorno y retardo de propagación.
-->NEXT es tal vez la más importante medida de desempeño. NEXT es acople no deseado de señales entre los pares de transmisión y recepción, su medida es dada en decibeles y expresa la relación entre la señal transmitida y el crosstalk.
Cuando mas de un par transmite al tiempo, debe medirse el NEXT producido por cada uno de los pares de transmisión sobre el par de recepción y sumarse, este parámetro es el Power Sum NEXT (PSNEXT).
FEXT es la relación señal transmitida crosstalk en el punto lejano. ACR es la diferencia en decibeles entre NEXT y la atenuación a una frecuencia dada.
pares trenzados apantallados y sin apantallar
Los pares sin apantallar son los más baratos aunque los menos resistentes a interferencias (aunque se usan con éxito en telefonía y en redes de área local). A velocidades de transmisión bajas, los pares apantallados son menos susceptibles a interferencias, aunque son más caros y más difíciles de instalar.
Par trenzado blindado (STP):
Formado por una capa exterior plástica aislante y una capa interior de papel metálico, dentro de la cual se sitúan normalmente cuatro pares de cables, trenzados para a par, con revestimientos plásticos de diferentes colores para su identificación. Combina las técnicas de blindaje, cancelación y trenzado de cables. Según las especificaciones de uso de las instalaciones de red Ethernet, STP proporciona resistencia contra la interferencia electromagnética y de la radiofrecuencia sin aumentar significativamente el peso o tamaño del cable.
'Medios de Transmisión'
El cable de par trenzado blindado tiene las mismas ventajas y desventajas que el cable de par trenzado no blindado. STP brinda mayor protección contra todos los tipos de interferencia externa, pero es más caro que el cable de par trenzado no blindado.
A diferencia del cable coaxial, el blindaje en el STP no forma parte del circuito de datos y, por lo tanto, el cable debe estar conectado a tierra en ambos extremos. Normalmente, los instaladores conectan STP a tierra en el armario para el cableado y el hub, aunque esto no siempre es fácil de hacer, especialmente si los instaladores intentan usar paneles de conexión antiguos que no fueron diseñados para cable STP. Si la conexión a tierra no está bien realizada, el STP puede transformarse en una fuente de problemas, ya que permite que el blindaje actúe como si fuera una antena, absorbiendo las señales eléctricas de los demás hilos del cable y de las fuentes de ruido eléctrico que provienen del exterior del cable.
No es posible realizar tendidos de cable STP tan largos como con otros medios de networking (como, por ejemplo, cable coaxial) sin repetir la señal, siendo la longitud máxima de cable recomendada de unos 100 metros, y su rendimiento suele ser de 10-100 Mbps.
Se especifica otro tipo de STP para instalaciones Token Ring. En este tipo de cable, conocido como STP de 150 ohmios, el cable no sólo está totalmente blindado para reducir la interferencia electromagnética y de radiofrecuencia, sino que a su vez cada par de hilos trenzados se encuentra blindado con respecto a los demás para reducir la diafonía. Si bien el blindaje empleado en el cable de par trenzado blindado de 150 ohmios no forma parte del circuito, como sucede con el cable coaxial, aún así debe estar conectado a tierra en ambos extremos. Este tipo de cable STP requiere una cantidad mayor de aislamiento y de blindaje. Estos factores se combinan para aumentar de manera considerable el tamaño, peso y costo del cable. También requiere la instalación de grandes armarios y conductos para el cableado, lujos que en muchos edificios antiguos no pueden permitirse.
Para la conexión de los cables STP a los diferentes dispositivos de red se usan unos conectores específicos, denominados conectores STP.
Par trenzado no blindado (UTP):
Compuesto por cuatro pares de hilos, trenzados para a par, y revestidos de un aislante plástico de colores para la identificación de los pares. Cada par de hilos se encuentra aislado de los demás. Este tipo de cable se basa sólo en el efecto de cancelación que producen los pares trenzados de hilos para limitar la degradación de la señal que causan la EMI y la RFI. Para reducir aún más la diafonía entre los pares en el cable UTP, la cantidad de trenzados en los pares de hilos varía. Al igual que el cable STP, el cable UTP debe seguir especificaciones precisas con respecto a cuanto trenzado se permite por unidad de longitud del cable.
'Medios de Transmisión'
Cuando se usa como medio de networking, el cable UTP tiene cuatro pares de hilos de cobre de calibre 22 ó 24. El UTP que se usa como medio de networking tiene una impedancia de 100 ohmios. Esto lo diferencia de los otros tipos de cables de par trenzado, como, por ejemplo, los que se utilizan para los teléfonos. Como el UTP tiene un diámetro externo de aproximadamente 0,43 cm, el hecho de que su tamaño sea pequeño puede ser ventajoso durante la instalación. Como el UTP se puede usar con la mayoría de las arquitecturas de networking principales, su popularidad va en aumento.
El cable de par trenzado no blindado presenta muchas ventajas. Es de fácil instalación es más económico que los demás tipos de medios de networking. De hecho, el cable UTP cuesta menos por metro que cualquier otro tipo de cableado de LAN, sin embargo, la ventaja real es su tamaño. Como su diámetro externo es tan pequeño, el cable UTP no llena los conductos para el cableado tan rápidamente como sucede con otros tipos de cables. Este puede ser un factor sumamente importante para tener en cuenta, en especial si se está instalando una red en un edificio antiguo. Además, si se está instalando el cable UTP con un conector RJ, las fuentes potenciales de ruido de la red se reducen enormemente y prácticamente se garantiza una conexión sólida y de buena calidad.
Sin embargo, el cableado de par trenzado también tiene una serie de desventajas. El cable UTP es más sensible al ruido eléctrico y la interferencia que otros tipos de medios de networking. Además, en una época el cable UTP era considerado más lento para transmitir datos que otros tipos de cables. Sin embargo, hoy en día ya no es así. De hecho, en la actualidad, se considera que el cable UTP es el más rápido entre los medios basados en cobre.
La distancia máxima recomendada entre repetidores es de 100 metros, y su rendimiento es de 10-100 Mbps.
Para conectar el cable UTP a los distintos dispositivos de red se usan unos conectores especiales, denominados RJ-45 (Registered Jack-45), muy parecidos a los típicos conectores del cableado telefónico casero.
'Medios de Transmisión'
Este conector reduce el ruido, la reflexión y los problemas de estabilidad mecánica y se asemeja al enchufe telefónico, con la diferencia de que tiene ocho conductores en lugar de cuatro. Se considera como un componente de networking pasivo ya que sólo sirve como un camino conductor entre los cuatro pares del cable trenzado de Categoría 5 y las patas de la toma RJ-45. Se considera como un componente de la Capa 1, más que un dispositivo, dado que sirve sólo como camino conductor para bits.
'Medios de Transmisión'
Los enchufes o conectores RJ-45 se insertan en jacks o receptáculos RJ-45. Los jacks RJ-45 tienen 8 conductores, que se ajustan a los del conector RJ-45. En el otro lado del jack RJ-45 hay un bloque de inserción donde los hilos individuales se separan y se introducen en ranuras mediante una herramienta similar a un tenedor denominada herramienta de punción.
'Medios de Transmisión'
Para centralizar los diferentes conectores RJ-45 se utilizan unos dispositivos especiales, denominados paneles de conexión. Vienen provistos de 12, 24 ó 48 puertos y normalmente están montados en un bastidor. Las partes delanteras son jacks RJ-45;, las partes traseras son bloques de punción que proporcionan conectividad o caminos conductores.
UTP tipo 3 y tipo 5
En la mayoría de los edificios se hace un pre-instalación con un par trenzado de 100 ohmios, denominado de calidad telefónica. Por tanto, este tipo de pre-instalaciones se deben considerar siempre como una alternativa bastante atractiva y poco costosa para LAN. No obstante, hay que tener en cuenta que las velocidades de transmisión y las distancias que se pueden alcanzar con este medio no siempre alcanzan las necesidades mínimas.
En 1.991, la EIA (“Electronic Industries Association”) público el estándar EIA-568, denominado “Comercial Building Telecommunications Cabling Standard”, que define el uso de pares trenzados sin apantallar de calidad telefónica y depares apantallados como medios para aplicaciones de transmisión de datos en edificios. Nótese que por aquel tiempo, las características de dichos medios eran suficientes para el rango de frecuencias y velocidades típicas necesarias en entornos ofimáticos. Es más, en esa época el intervalo de interés para el diseño de LAN estaba entre 1 y 16 Mbps. Con el tiempo, los usuarios han ido migrando tanto a estaciones de trabajo como a aplicaciones de mayores prestaciones. Por tanto, había cada vez un interés creciente en diseñar LANs que proporcionaran hasta 100 Mbps sobre medios no costosos. Como respuesta a esa necesidad, en 1.995 se propuso el EIA-568-A. Este estándar incorpora los más recientes avances tanto en el diseño de cables y conectores como en métodos de test. En esta especificación se consideran tanto cables de pares apantallados a 150 . como pares no apantallados de 100 ohmios.
En el estándar EIA-568-A se consideran tres tipos de cables UTP :
• Tipo 3 : consiste en cables y sub hardware asociado, diseñados para frecuencias de hasta 16 MHz.
• Tipo 4 : consiste en cables y sub hardware asociado, diseñados para frecuencias de hasta 20 MHz.
• Tipo 5 : consiste en cables y sub hardware asociado, diseñados para frecuencias de hasta 100 MHz.
De entre los anteriores, los tipos 3 y 5 son los más utilizados en los entornos LAN. El tipo 3 corresponde a los cables de calidad telefónica que existe en la mayoría de los edificios de oficinas. Con un diseño apropiado y a distancias limitadas, con cables tipo 3 se pueden conseguir velocidades de hasta 16 Mbps. El tipo 5 es un cable de mejores características para la trasmisión de datos, y cada vez se está utilizando más como pre-instalación en los nuevos edificios de oficinas. Con un diseño apropiado y a distancias limitadas, con tipo 5 se puede alcanzar 100 Mbps.
La diferencia esencial entre los cables tipo 3 y 5 está en el número de trenza por unidad de distancia. El paso de torsión en el tipo 5 es del orden de 1 ya 2 trenzas por centímetro, mientras que el tipo 3 tiene una trenza cada 7 o 10 centímetros. El trenzado del tipo 5 es por supuesto más caro, ahora bien proporciona prestaciones superiores que el de tipo 3.
El primer parámetro para establecer la comparativa es la atenuación. Como es sabido la energía de la señal decrece con la distancia recorrida en el medio de tras misión. En medios guiados la atenuación obedece a una ley logarítmica, por lo que se expresa como un número constante de decibelios por unidad de longitud.El diseñador ha de tener en cuenta las siguientes consideraciones relacionadas con la atenuación.
  • Primero, la señal recibida debe tener suficiente energía como para que la circuitería electrónica en el receptor pueda detectar e interpretar correctamente la señal.
  • En segundo lugar, la señal debe mantener un nivel lo suficientemente mayor que el del ruido para ser recibida sin error.
  • Tercero, la atenuación es una función creciente de la frecuencia. La diafonía que sufren los sistemas basados en pares trenzados es debida a la inducción que provoca un conductor en otro cercano. Por conductor debe entenderse tanto los pares que forman el cable, como los “pines” (patillas metálicas) del conector.
Esta diafonía se denomina cercana al extremo porque la energía que sale del enlace se induce en un conductor de entrada cercano al mismo extremo, es decir, la energía de la señal trasmitida se induce en el par próximo por el que se recibe.
Fibra Óptica
Se trata de un medio muy flexible y muy fino (de 2 a 125um) que conduce energía de naturaleza óptica; si, puede conducir transmisiones de luz moduladas. Para la fibra se pueden usar diversos tipos de cristales y plásticos. Las perdidas menores se han conseguido con la utilización de fibras de silicio fundido ultra puro.
  • Las fibras ultra- puras son muy difíciles de fabricar.
  • Las fibras de cristal multicomponente tienen mayores perdidas y son más económicas, pero proporcionan una prestación suficiente.
  • La fibra de plástico tiene todavía un coste menor y se puede utilizar para enlaces de distancias cortas, para los que son aceptables pérdidas moderadamente altas.
Si se compara con otros medios de la red de datos, es más caro, sin embargo, no es susceptible a la interferencia electromagnética y ofrece velocidades de datos más altas que cualquiera de los demás tipos de medios de la red de datos descritos aquí. El cable de fibra óptica no transporta impulsos eléctricos, como lo hacen otros tipos de medios de la red de datos que usan cables de cobre. En cambio, las señales querepresentan a los bits se convierten en haces de luz.
Su forma es cilíndrica con tres secciones radiales: núcleo, revestimiento y cubierta. El núcleo está formado por una o varias fibras muy finas de cristal o plástico alta pureza con un alto índice de refracción. Cada fibra está rodeada por su propio revestimiento que es un cristal o plástico con diferentes propiedades ópticas distintas a las del núcleo, es decir, con un índice de refracción bajo, la luz se captura en el núcleo de la fibra. Este proceso se denomina reflexión interna total y permite que la fibra óptica actúe como un "tubo de luz", guiando la luz a través de enormes distancias, incluso dando vuelta en codos. Las partes que guían la luz en una fibra óptica se denominan núcleo y revestimiento. Alrededor de este conglomerado está la cubierta (constituida de material plástico o similar) que se encarga de aislar el contenido de aplastamientos, abrasiones, humedad, etc... Si se observa una sección transversal de este cable, veremos que cada fibra óptica se encuentra rodeada por capas de material amortiguador protector, normalmente un
material plástico como Kevlar, y un revestimiento externo. El revestimiento exterior protege a todo el cable. Generalmente es de plástico y cumple con los códigos aplicables de incendio y construcción. El propósito del Kevlar es brindar una mayor amortiguación y protección para las frágiles fibras de vidrio que tienen el diámetro de un cabello.
'Medios de Transmisión'
Siempre que los códigos requieran que los cables de fibra óptica deban estar bajo tierra, a veces se incluye un alambre de acero inoxidable como refuerzo. La longitud máxima de cable recomendada entre nodos es de 2.000 metros, y su rendimiento es alto, de 100 0 más Mbps.
Uno de los avances tecnológicos más significativos en la trasmisión de datos ha sido el desarrollo de los sistemas de comunicación de fibra óptica. No en vano, la fibra disfruta de una gran aceptación para las telecomunicaciones a larga distancia, y cada vez más está siendo más popular en las aplicaciones militares.
Su perfeccionamiento continuado así como su reducción en precio han contribuido a convertirla en un medio atractivo para los entornos LAN.
Las características diferenciales de la fibra óptica frente al cable coaxial y al par trenzado son:
• Mayor ancho de banda : El ancho de banda, y por tanto la velocidad de trasmisión, en las fibras es enorme. Experimentalmente se ha demostrado que se pueden conseguir velocidades de trasmisión de 2 Gbps para decenas de kilómetros de distancia. Compárese con el máximo que se puede conseguir en el cable coaxial:
cientos de Mbps sobre aproximadamente 1km, y con los escasos Mbps que se pueden obtener en la misma distancia para pares trenzados, o con los 100Mbps que se consiguen en pares trenzados si la distancia se reduce a unas pocas decenas de metros.
• Menor tamaño y peso: Las fibras, ópticas son apreciablemente más finas que el cable coaxial o que los pares trenzados embutidos, por lo menos en un orden de magnitud para capacidades de transmisión comparables. En las conducciones estrechas previstas en las edificaciones para el cableado, así como en las conducciones públicas subterráneas, la utilización de tamaños pequeños tiene unas ventajas evidentes. La reducción en tamaño lleva a su vez aparejada una reducción en peso que disminuye la infraestructura necesaria.
• Atenuación menor: La atenuación es significativamente menor en las fibras ópticas que en los cables coaxiales y pares trenzados(Figura 3.3), además es constante en un gran intervalo de frecuencia.
• Aislamiento electromagnético: Los sistemas de fibra óptica no se ven afectados por los efectos de campos electromagnéticos exteriores. Estos sistemas no son vulnerables a interferencias, ruido impulsivo o diafonía. Y por la misma razón, las fibras no radian energía, produciendo interferencias despreciables con otros equipos y proporcionando a la vez un alto grado de privacidad; además, relacionado con esto la fibra es por construcción, difícil de intervenir o, coloquialmente, “pinchar”.
• Mayor separación entre repetidores: Cuantos menos repetidores haya el coste será menor, además de haber menos fuentes de error. Desde este punto de vista, las prestaciones de los sistemas de fibra óptica han sido mejoradas progresivamente. Por ejemplo, AT&T ha desarrollado un sistema de trasmisión que consigue 3.5 Gbps sobre una distancia de 318 km [ ] 92 PARK SIN NECESIDAD DE REPETIDORES. Los sistemas basados en coaxial y en pares trenzados requieren repetidores cada pocos kilómetros.
Las cinco aplicaciones básicas en las que la fibra óptica es importante son:
• Trasmisiones a larga distancia
• Trasmisiones metropolitanas
• Acceso a áreas rurales
• Bucles de abonado
• Redes de área local
Su rango de frecuencias es todo el espectro visible y parte del infrarrojo. El principio que rige la transmisión en la fibra óptica es el siguiente: los rayos de luz inciden con una gama de ángulos diferentes posibles en el núcleo del cable, entonces sólo una gama de ángulos conseguirán reflejarse en la capa que recubre el núcleo. Son precisamente esos rayos que inciden en un cierto rango de ángulos los que irán rebotando a lo largo del cable hasta llegar a su destino. A este tipo de propagación se le llama multimodal. Si se reduce el radio del núcleo, el rango de ángulos disminuye hasta que sólo sea posible la transmisión de un rayo, el rayo axial, y a este método de transmisión se le llama monomodal.
'Medios de Transmisión'

No hay comentarios:

Publicar un comentario